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The Principle of Kinematics and Power
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Abstract – These there are dynamic principles both in
particles and rigid bodies such as Principle of Work and
Energy and Principle of Impulse and Momentum.  During
the past few year, there are many researches about Jerk in
both direct (the third derivative of displacement with respect
to time) and indirect (the first derivative of force with respect
to time) jerks.  This paper describes about how the Principle
of Kinematics and Power according to particles and rigid
bodies are derived and the meaningful of the principle via
examples.
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I. INTRODUCTION

When solving dynamic problem according to particles,
the Newton’s second law is applied to determine the
change of velocity or displacement of particle via
integration of the acceleration using appropriated
kinematic equations.  Still there are classes of problems in
which the change of unbalanced forces with respect to
time (indirect jerk) acting on particles are of interest [2],
[3].  The integration of the indirect jerk with respect to the
displacement of particle is concerned as power that
applied on particle during the corresponding displacement.
This relationship can be derived as the principle of
kinematic and power which are the subject of this paper.

II. PRINCIPLE DERIVATION

From Fig.1, the power done by the change of force in

time
dt

Fd


during the particle motion from point A to

point B is defined as

rd
dt

Fd
dP




 , (1)

where dP called work which is a scalar quantity.
Now, in order to derive the principle of power and

kinematics, the Newton’s second law must be taken
derivative with respect to time which may be written as

amF


 , (2)

where a


is an acceleration of the particle.
Equation (2) is now taken derivative with respect to

time, become

dt

ad
mF

dt

d


 . (3)

Defining

 F
dt

d
eJ


, (4)

called indirect jerk [4], [5], so that (3) becomes

dt

ad
meJ


 . (5)

Fig.1. Particle in Motion

During the finite movement of the particle according to
a change of force in time, from (1) and (2), the power
equal to

  
B

A
rdF

dt

d
P


. (6)

If (3) is dotted with an infinitesimal displacement, the
equation can be written as

rd
dt

ad
mrdF

dt

d 



 . (7)

Rearrange (7) and take integration both sides yield

advmrdF
dt

d B

A

a

a

B

A


   . (8)

Finally, (8) is called Principle of Power and Kinematic
since the left hand side represents a power and the right
hand side contains kinematic quantities.  Moreover, this
principle can be written in a compact form as

 AB

B

A
aamvrdeJ 


. (9)

Consider the plane Kinematics of rigid bodies when a
couple M acting on the body, the power is given by


M

dt

d
MP  , (10)

Fig.2. Rigid Body in Motion
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where d and  are the differential angular
displacement and the angular velocity, respectively.

If force, F and moment, M are applied to the rigid
body, the total power becomes

MvFP 


. (11)
Similarity to the particle derivation of the principle of

kinematics and power, the power in Eq. (11) can be
rewritten as

   
2

1





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dM
dt

d
rdF

dt

d
P

B

A
. (12)

Fig. 3 shows the general plane motion of a rigid body
where G is a center of mass,  and  are the angular
velocity and acceleration respectively, v


is a linear

velocity of a rigid body im and iv are the mass and

velocity of a point i on the rigid body.
Follow the derivation from (1) to (7), (8) that relevant

for the rigid body in motion can be written as

.
2

1
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(13)

Fig.3. General Plane Motion

Moreover, redefine

dt

d
I

dt

ad
meJ





, (14)

the Principle of Kinematics and Power can be rewritten as

   ABAB

B

A
IaamvrdeJ  


. (15)

III. EXAMPLE

The wheel in Fig. 4 rolls up on its inclined hubs without
slipping.  It is pulled by the force of 200-N which applied
to the string wrapped around the outer rim of the wheel.  If
this wheel starts from rest and its center O has moved up
the incline three meters long, compute its angular velocity,
 .  The mass of this wheel is 40 Kg and has a radius of
gyration of 200 mm.  Determine the power input from the
force of 200-N and the indirect jerk of the wheels.

Fig.4. Incline Wheel Free-body Diagram

Of the four forces shown in Fig. 4 the only force 200-N
and the weight of the wheel do the work.  The friction
does not produce the work since there is no slip occurred.
From the concept of the instantaneous center of zero
velocity, point A has a velocity,

vv A ]100/)100200[(  .

This because of point A on the string will move
3]100/)100200[(  times as the point O moves.  Then

the work done on the wheel is

JWork 595)3(15sin)81.9)(40()3(
100

100200
100 


 

(16)
Applying the principle of work and energy, yields,

.0.1)2.0(40
2

1
)1.0(40

2

1
,0 2222

21   TT (17)

Since the equality of (16) and (17), the angular velocity,
 can be computed and it equals to srad /4.24 .
The power input to this wheel is computed by using (11),
which is

WP 1464)4.24)(3.0(200  . (18)

The angular acceleration is

2

22 /5.37
)2.0(40

)3.0(200
srad , (19)

and the acceleration of the wheel after it moves three
meters long becomes

22

2 /3.63)1.0()4.24()1.0)(5.37( sma  .  (20)

Finally, the indirect jerk can be obtained by solving (15) as
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   3.63)4.24()2.0)(40(3.63)1.0)(4.24(40 2 rdeJ
B

A



(21)
which is

8629
3

0
 rdeJ


. (22)

Then the indirect jerk, 3/33.2876 smJe  .

IV. CONCLUSION

There are dynamic principles both in particles and
rigid bodies such as Principle of Work and Energy
and Principle of Impulse and Momentum.  During
the past few year, there are many researches about
Jerk in both direct (the third derivative of
displacement with respect to time) and indirect (the
first derivative of force with respect to time) jerks.
This paper describes about how the Principle of
Kinematics and Power according to particles and
rigid bodies are derived and the meaningful of the
principle via examples.

Since there have been several research publications
such as [6], [7] and [8], on minimizing dynamic jerk,
this principle can be applied and used to analyze
more in the area of dynamic optimization [1].
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